On-Line instrumentation for critical wastewater parameters: many are available, but few are chosen **Deon Anderson** MSc. Water & Wastewater Engineering

deon_anderson@yahoo.com

- Increasingly tight consents regulating effluent discharges from wastewater treatment plants
- Consequently water and wastewater utilities have been continuously seeking to optimise their processes in an effort to meet these consents, while at the same time reduce costs.

- Fixed dissolved oxygen (DO) concentrations were set to control effluent chemical oxygen demand (COD) and ammonia concentrations.
- Fixed chemical doses were set to maintain effluent phosphate levels below the consent limits.

- Fixed dosing regimes resulted in an excess of air and chemical supplies respectively during low influent loads, which increases operational costs.
- In many countries, the cost of electricity has doubled over the last 10 years.
- The use of chemicals in wastewater treatment has been competing with that for potable water treatment.

Deon Anderson MSc. Water L Wastewater Engineering

The main drivers for wastewater treatment therefore involve:

- Reduction of costs associated with energy and chemical consumption
- Meeting effluent consents, while using minimal resources.

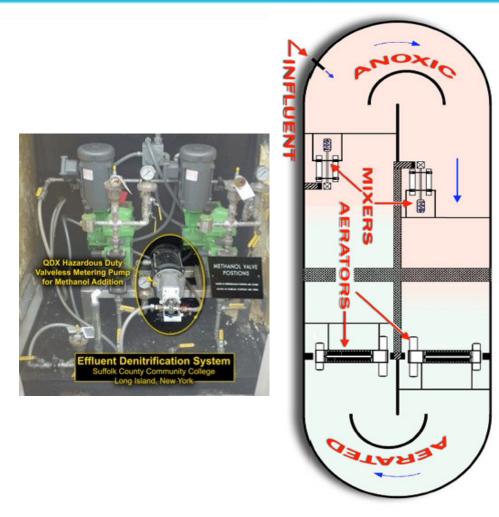
<u>Considering these drivers, real time control (RTC) is</u> <u>worth consideration for full scale implementation</u>

Why online instrumentation?

Deon Anderson MSc. Water & Wastewater Engineering

Nitrification processes:

- Aeration typically constitutes ≈50% of total power consumption.
- Real time measurements and control have proven to **lower** this to **15-28%** by supplying only required amount of DO as demand varies.

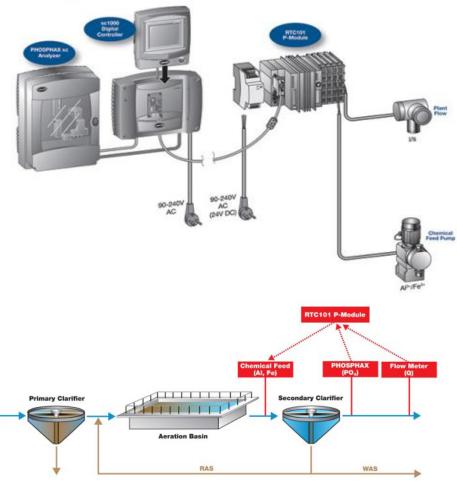


Why online instrumentation?

Deon Anderson MSc. Water L Wastewater Engineering

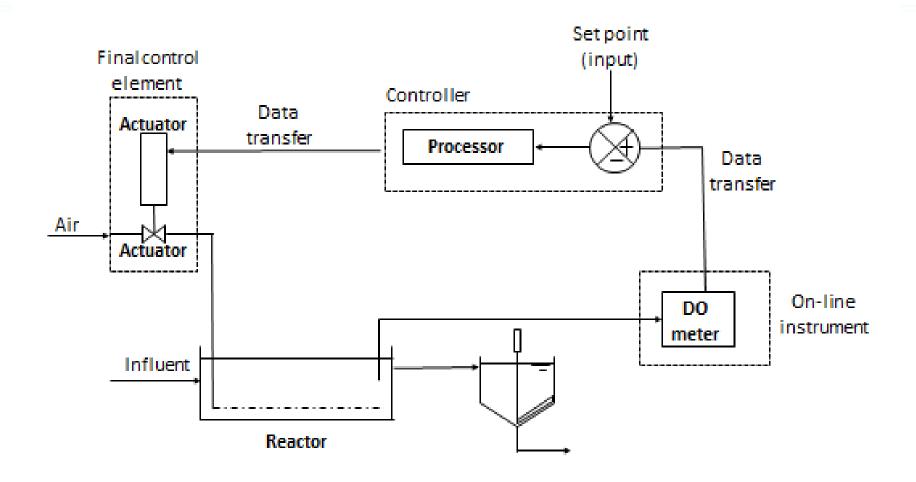
Denitrification processes

- Methanol: external source of carbon for the microbial conversion of nitrate to nitrogen gas.
- Online measurements and control have proven to reduce methanol consumption up to 50% by modulating methanol dose according to incoming nitrate load.

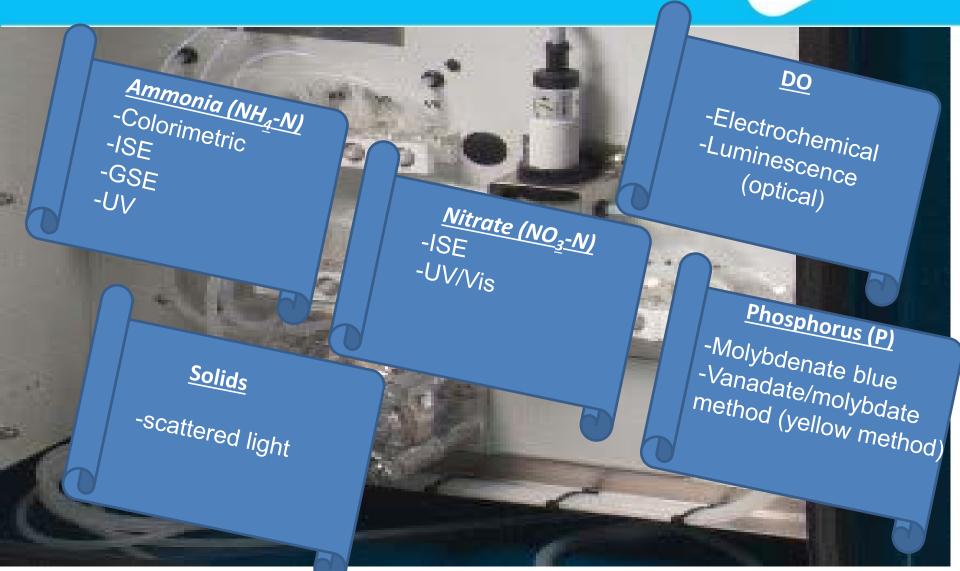

Why online instrumentation?

Deon Anderson MSc. Water & Wastewater Engineering

<u>Chemical phosphorous</u> <u>removal</u>


- Metal salts (coagulants): used to remove phosphorous via a precipitation reaction.
- Significant reductions of up to 56% in coagulant consumption with online measurements and control.

RTC101 P-Module Real-Time Phosphorus Control Solution



Deon Anderson MSc. Water & Wastewater Engineering

Control loop

Methods of online measurement

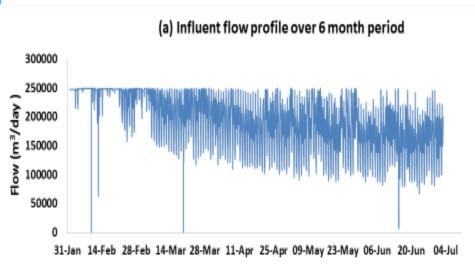
Dissolved oxygen (DO)

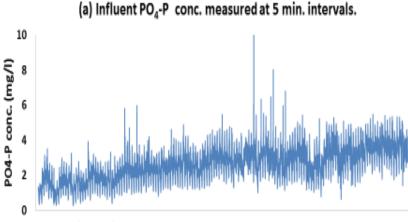
Advantages	Limitations		
Electrochemical method			
Low cost	Susceptible to errors		
Gives direct measurement	Membrane fouling		
Linear response	Membrane fragile, sensitive.		
Adapts rapidly to changing oxygen conc. (approx. 60s for change from 0 to 98% sat.)	Electrodes & electrolytes consumed.		
Accurately detects small changes in concentration	Needs re-calibration if temp & pressure significantly fluctuates.		
	Often drifts from calibration		
	Very long start up time (as much as 6 hrs)		
	Maintenance & downtime		
Optical method			
Minimum maintenance, robust, reliable and fast.	Response time is slower (for decreasing conc.) than for increasing concentration but overall rapid		

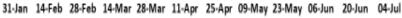
Ammonia (NH3-N)

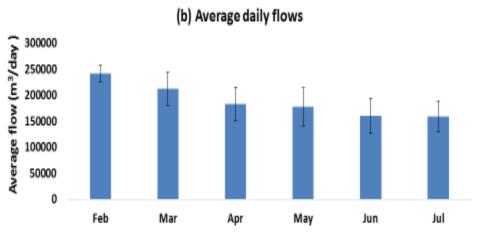
Advantages	Limitations	Advantages	Limitations
Colorimetric		Gas sensing electrode (GSE)	
Accurate	Complexing reagent (citrate, EDTA) needed to avoid precipitate	Not affected by colour, turbidity	Interference from volatile amines
	interferences Need specialist on site to carry	Not affected by presence of other ions or dissolved species	
Follows standard method procedure	maintenance		Reagent replacement
	Chemical disposal required	Electrode can be used in flow through	(but inexpensive)
	Frequent clogging of narrow tubings	applications	
ISE			
Inexpensive	Precision rarely better than 1%	UV absorbance	
Simple to use	Electrodes easily fouled by proteins		Organic substances absorb UV at 254
	and organic solutes	No probes used	nm thus can potentially interfere
Wide concentration range (typically	Interference by presence of other		
from <1 to several thousand ppm)	ions		
Non consuming, non-contaminating to analyte	Electrodes fragile, have limited shelf		Turbidity can also potentially interfere
	life (requires replacement > thrice a		
	year)		Adjustment mechanisms like multiple
	Electrodes respond to activity of	Accurate	wavelength detection needed to
Short response time	uncomplexed ions (ligands must be		compensate for interferences
	masked)		
Unaffected by colour or turbidity	Often drifts from calibration		Can be expensive
Frequent calibration (every 2 wks or			

Phosphorus (colorimetric methods)

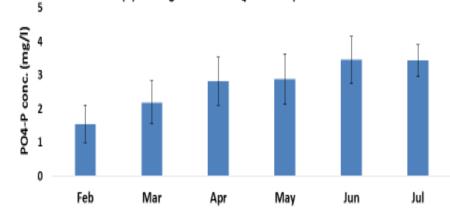

Advantages	Limitations
High sensitivity	The reagent reacts with phosphorous only in the form of PO4 ³⁻ .
	Due to filtration of sample, other forms of P may be lost with solids.
Simple	High temperature digestion (before filtration) required for total-P
	Phosphate has high affinity to glassware: acid wash of sample cell may be needed.
	Requires constant chemical replacement and safe chemical disposal.

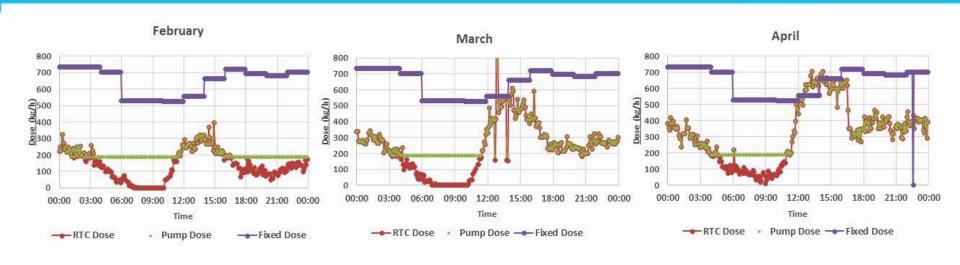

Deon Anderson MSc. Water & Wastewater Engineering

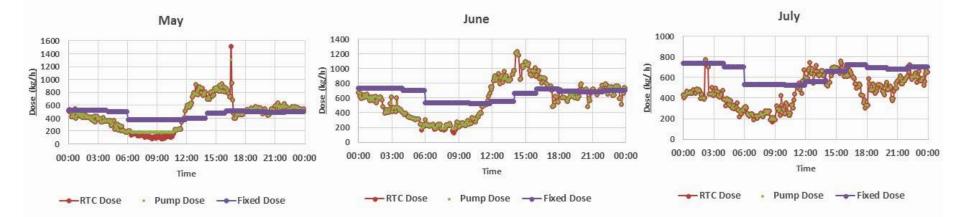

Case Study

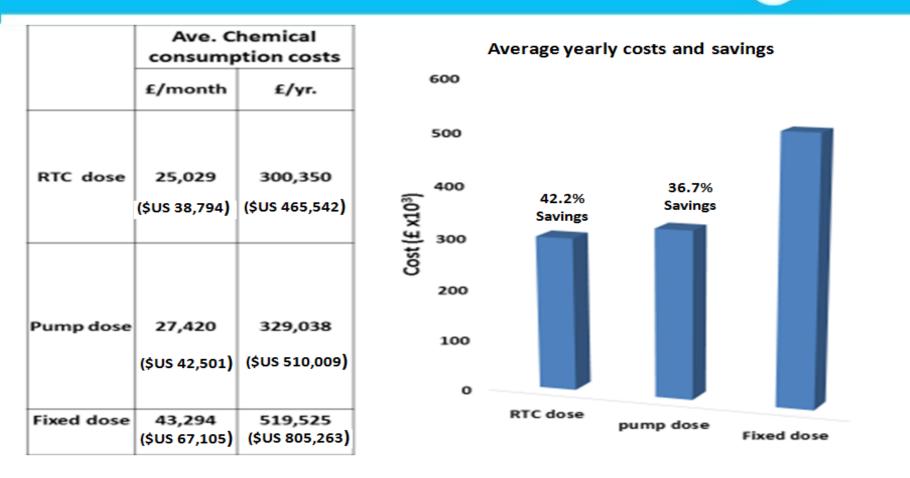

- population served: 484,000 pe
- Regulated consent for total P: 1mg/l.
- Coagulant used: Ferric sulphate primary settlement tanks (PST), which also improves the solids removal in the PSTs
- primary settlement, there are aeration tanks containing anoxic and anaerobic zones, secondary settlement tanks anda sand filter for tertiary treatment of the effluent
- RTC 101-P

Influent flow and Pconcentrations









Diurnal dosing profiles for randomly selected days of the months under study.

Costs and savings on chemicals for RTC compared to fixed dosing.

Payback Period

Conclusions

- Online measurement and control guarantee improved treatment and reduced operational costs.
- Measurements are influenced by the accuracy and reliability of the method used.
- The use of online phosphorous sensors provide significant savings on chemical costs (42%) with short payback (<2 months) as demonstrated in the case study.

Thoughts/ Comments/ Questions?

